

A SOLUTION TO TECHNOLOGY AS A DISRUPTER - THE ALL-PURPOSE TECHNOLOGY INFUSION PLAN (TIP)

> TCC VIRTUAL PRESENTATION MARCH 19, 2015

Anne Hewitt, PhD | <u>anne.hewitt@shu.edu</u> Nalin Johri, PhD | <u>nalin.johri@shu.edu</u> Riad Twal, Eds | <u>riad.twal@shu.edu</u>

Presentation Outline

\checkmark Introduction

- ✓ NEW TECHNOLOGY CHECKLIST DR. HEWITT
- ✓ AN SHU EXAMPLE DR. JOHRI
- ✓ PREPPING FACULTY INST. TWAL

✓ Assessments and Next Steps

Seton Hall University's MHA Degree

http://www.shu.edu/academics/artsci/mha/index.cfm

- 42 credit curriculum
- On-Campus and Online 3 credit Course
 14 week (On-Campus) 7 week (Online)
- Blackboard teaching platform
- Online format includes 3 on-campus Intensive/Residency
- Only CAHME*-accredited (online and on-campus) MHA program in New Jersey
 * Commission on Accreditation of Hashtharm Management Education (CALINE)

* Commission on Accreditation of Healthcare Management Education (CAHME)

PART 1: Technology Infusion Plan

TECHNOLOGY is novation in action

DR. ANNE HEWITT

How many of you feel that technology is a disruptor of your teaching and within your program of study ???

Why?

Is technology the disruptor or have we not addressed the process of integrating technology into our teaching?

SHU Technology Response

- Means to effective delivery of curriculum content and engagement of students
- Review use of technology across 15 years of MHA program
- Hewitt, A. & Spencer, S. (2012). Web 2.0 for the online graduate student: Technology immersion for both curriculum and residency. *Metropolitan Universities: An International Forum. Vol. 23 (2).* 33-50.
- Solution: Technology Infusion Plan (TIP)

Technology Infusion Plan

Technology Criteria Assumptions

Technology Selection Checklist

Implementation Timeline

Integration Protocol

Outcomes of Integration of Technology

Technology Criteria Assumptions

- 1. Offers real-world activity learning opportunity
- 2. Permits asynchronous and synchronous collaboration
- 3. Facilitates application of basic course concepts in a problem-based learning format
- 4. Introduces complex systems in a systematic and user-friendly way
- 5. Facilitates direct competency development

Technology Selection Checklist

Pedagogical Purpose	X	Scalability	X
Faculty Ease of Use	Х	Platform Integration	X
Student Ease of Use	Х	Tutorial Availability	Х
Level of Student Engagement	X	Assessment Component	X

Bridging the Gap

PART 2: SHU Implementation Example

Dr. Nalin Johri

Generic Implementation Timeline

- Technology Selection Checklist Completed
- ✓ Faculty Approval and Feedback
- ✓ Technology Introduction to Faculty
- ✓ Faculty Champions Diffusion of an Innovation
- ✓ Prepping Faculty Protocol
- ✓ Assessment Efforts

Motivation

- Online course students struggling with concepts – created narrated presentation for review
- On-campus need to focus on application

Approach to Adoption of Technology

Technology Infusion Criteria	Blackboard Collaborate™	🔆 iSpring	🕑 ТОР НАТ
	Online collaboration tool	e-Learning/Authoring	Student engagement platform
Real-world activity	\checkmark		
Asynchronous / Synchronous	\checkmark	\checkmark	\checkmark
Problem-based learning	\checkmark		\checkmark
Systematic and user-friendly	\checkmark	\checkmark	\checkmark
Direct Competency Development	\checkmark		

Blackboard Collaborate[™]

- Beta year for integration
- Faculty phase-in
- Familiarity for both students and faculty
- Positive outcomes
- Asynchronous vs Synchronous Debate

- Reinforce key concepts
- Student engagement
- Instantaneous feedback to students
- Springboard to application

Levels of Outcome on Integration of Technology

Levels of Outcome on Integration of Technology	Blackboard Collaborate™	🔆 iSpring	🕑 ТОР НАТ
	Online collaboration tool	e-Learning/Authoring	Student engagement platform
Connection			
Communication	\checkmark	\checkmark	\checkmark
Collaboration	\checkmark	\checkmark	\checkmark

PART 3: Prepping Faculty

MR. RIAD TWAL

Approach

- Multiple Opportunities to Learn
- What makes sense for your course
 - Solving the reoccurring 'tripping points'
- "Don't try everything"
- Continuous Support

- Teaching, Learning, & Technology Center @ SHU

Living the Technology

- Demonstration of specific technologies
 - Focus on example use cases
- Modeling use of technologies
 - Face to Face faculty meetings transitioned to Blackboard Collaborate sessions
- Continuously exploring potential technologies
 - Twitter | Microsoft Mix | Google Hangouts | Prezi | ...

The Process

- Collaborate with faculty
 - Identification of improvement opportunity (what is the objective)
 - Analyze different potential technology (how can a given technology be integrated)
 - Build implementation for current semester (with assessment)
 - Plan for future semesters

ASSESSMENTS AND Next Steps

LESSONS LEARNED All presenters

Evaluation Components (in progress)

Descriptive Study

- Faculty e-Survey
- Student e-Survey
- Course evaluations

Evaluation Focus

Faculty and Student Surveys

- Familiarity with Technology Infusion Plan (TIP)
- Ease of use and satisfaction
- Course-specific use of TIP and examples

Course Evaluation

• Student competency

Closing the Feedback Loop

- Concept of virtual tools (no hardware required by students) for student engagement and assessment has merit
- Better technology and platforms now available – Top Hat
- TIP needs to synchronize short and long term goals with up-coming technology priorities as shared by the university

Outcomes of Integration of Technology

Identified three levels of technology outcome –

- **1. Connection**: Reaching out or networking with others
- 2. Communication: Sharing resources and ideas
- **3. Collaboration**: Working effectively

Program Benefits

Student

Increased skill development & competency attainmentGreater student engagement and participation

Faculty

- Emphasis on application and synthesis of knowledge
- Enhanced teaching skills for critical thinking

Institution

- Increased course rigor enhances reputation
- University brand benefits from embedded technology

Summary Statements

The use of participatory technology applications allow students to successfully engage and self-assess their own learning outcomes.

The selection of which technology ultimately involves assessing faculty comfort level, expertise and accessibility.

Questions

