
Educating Pre-Service Teachers on Effective Diagnosis and Correction of Math Errors Using Technology

Danilo M. Baylen
Michelle Michael
University of West Georgia

Introduction

- Teaching to teach math to young learners
- Exploring educational platforms to assist learning of diagnosing and correcting mathematical errors while teaching

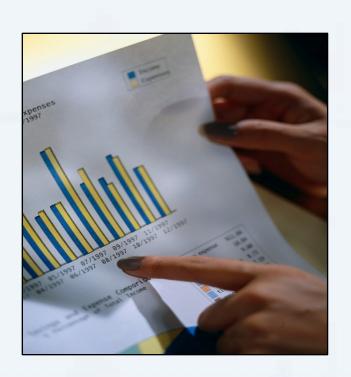
Literature Review

- □ Potential for video-based teaching for studentcentered approach (Friel & Carboni, 2000)
- ☐ Teachers need content, pedagogy & technology (Niess, 2006)
- □ Videos and discussions help recognize challenges (Star & Strickland, 2008)
- □ Video instruction connect knowledge to classroom context (Santagata, Zannoni & Stigler, 2007)

Research Questions

 How helpful are these supplemental teaching tools to the pre-service teachers' understanding of course content (diagnosing and correcting of mathematical errors)?

 In what ways are these teaching tools helpful to their understanding of course content?


Context and Participants

- Study conducted in a public university in Southeastern United States
- 24 pre-service teachers enrolled in an undergraduate education course participated in the study
- Used video clips produced by researchers that demonstrated practices of assessment and correction of mathematical errors

Data Collection Strategies

- Online survey following each clip
 - Helpful, useful & motivational
 - Overall feedback form: qualitative
- Quantitative data
 - Agreement scale
- Qualitative data
 - Common themes
 - Benefits and improvements

Findings

Helpfulness

- Lowest agreement rate (87.5%): Videos "A" and "I"
- Highest agreement rate (100%): Video "D"

Usefulness

- Lowest agreement rate (79.2%): Video "A"
- Highest agreement rate (100%): Videos "C" and "D"

Motivation

- Lowest agreement rate (75%): Video "A"
- Highest agreement rate (95.8%): Video "D"

Findings

Words referring to visualizing repeated throughout the answers to the open-ended questions (32 times)

- I was able to see it visually and auditory. It was like a second re-enforcer after class. (\$15)
- The videos showed how to correctly administer and assess children's mistakes and how to correct them. It was good to see how it is done almost like in person. (S19)
- These videos broke down the process for me in order for me to easily follow the steps. (S25)

Challenges and Limitations

 Users experiencing technical difficulties in accessing the video clips

Sample size (n=24)

- Inadequate participation
- Inability to generalize due to limited respondents

Implications and Conclusion

- Visual aspect of videos enable a practical learning of diagnosing and correcting mathematical errors
- Videos are an effective tool to be employed in undergraduate teacher education classrooms

 Digital resources ease the learning experience of pre-service teachers

References

- Friel, S. N., & Carboni, L. W. (2000). Using video-based pedagogy in an elementary mathematics methods course. School Science and Mathematics, 100(3), 118-127.
- Niess, M. L. (2006). Guest editorial: Preparing teachers to teach mathematics with technology. Contemporary Issues in Technology and Teacher Education, 6(2), 195-203. AACE.
- Santagata, R., Zannoni, C., & Stigler, J. W. (2007). The role of lesson analysis in pre-service teacher education: An empirical investigation of Teacher learning from a virtual video-based field experience. *Journal of Mathematics Teacher Education*, 10(2), 123-140.
- Star, J. R., & Strickland, S. K. (2008). Learning to observe: using video to improve pre-service mathematics teachers' ability to notice. *Journal of Mathematics Teacher Education*, 11(2), 107-125.

